Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
نویسندگان
چکیده
The concept of metamaterial-inspired nanocircuits, dubbed metatronics, was introduced in [Science 317, 1698 (2007); Phys. Rev. Lett. 95, 095504 (2005)]. It was suggested how optical lumped elements (nanoelements) can be made using subwavelength plasmonic or non-plasmonic particles. As a result, the optical metatronic equivalents of a number of electronic circuits, such as frequency mixers and filters, were suggested. In this work we further expand the concept of electronic lumped element networks into optical metatronic circuits and suggest a conceptual model applicable to various metatronic passive networks. In particular, we differentiate between the series and parallel networks using epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials. We employ layered structures with subwavelength thicknesses for the nanoelements as the building blocks of collections of metatronic networks. Furthermore, we explore how by choosing the non-zero constitutive parameters of the materials with specific dispersions, either Drude or Lorentzian dispersion with suitable parameters, capacitive and inductive responses can be achieved in both series and parallel networks. Next, we proceed with the one-to-one analogy between electronic circuits and optical metatronic filter layered networks and justify our analogies by comparing the frequency response of the two paradigms. Finally, we examine the material dispersion of near-zero relative permittivity as well as other physically important material considerations such as losses.
منابع مشابه
Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials
Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we ...
متن کاملNear - zero refractive index photonics
The control and manipulation of light on the nanoscale — the primary aim of nanophotonics — is of fundamental scientific interest and plays a key role in telecommunication technologies and energy management. Yet, because light–matter interactions are usually weak and hard to confine, they often need to be assisted by the use of suitably designed macroscopic media. For instance, the use of caref...
متن کاملOptical isolation with epsilon-near-zero metamaterials.
We suggest a principle for isolation of circularly polarized waves in magnetically active extreme-parameter metamaterials. Using theoretical analysis and numerical simulations, we show that metamaterials with extreme parameters, such as epsilon-near-zero materials (ENZ), when merged with magneto-optical materials, become transparent for forward circularly polarized waves of a given handedness a...
متن کاملIntegrated optical devices based on broadband epsilon-near-zero meta-atoms.
We verify the feasibility of the proposed theoretical strategy for designing the broadband near-zero permittivity (ENZ) metamaterial at optical frequency range with numerical simulations. In addition, the designed broadband ENZ stack is used as meta-atoms to build functional nanophotonic devices with extraordinary properties, including an ultranarrow electromagnetic energy tunneling channel and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 22 21 شماره
صفحات -
تاریخ انتشار 2014